Advances in Mineral Photography

Michael Pabst

Shenandoah Valley Gem and Mineral Society

January 11, 2016

Advances by the Mineral Photography Community (and smaller advances by myself)

Hardware: New Cameras, New Lenses

Compact Mirrorless Cameras with Removable Lenses

Electronic Shutters, with no mechanical vibration and remote control

Active Sensors, giving 40 MegaPixel photos (Olympus OMD Mark II)

Lenses designed for photomicrography

Long working distances objectives like Luminar (old reliable)

Super MACRO lenses like Canon 50 mm with 5x true magnification

Infinite focus Objectives like Mitutoyo

Software:

Image processing like Photoshop Elements version 14

Correct problems like shaking, incorrect exposure, cropping

Stacking programs like CombineZP

Increase depth of field, cheating the laws of optics by computer

View images we cannot see with our eyes and a microscope

3D photography

As size of mineral decreases, difficulty of photography increases exponentially towards impossible.

If your rock is (FOV or Field-of-View):

25 mm (one inch) – Easy with a copy stand and MACRO lens, even with handheld pocket camera

10 mm – Macro lens or Stereo Microscope

5 mm – Stereo microscope or Bellows with MACRO lens

2 mm – Bellows and Extension Tube with Luminar lens OR Mitutoyo Lens and Telephoto Lens (A quarter is 1.75 mm thick)

1 mm – Bellows and Extension Tube with Luminar lens OR Mitutoyo Lens, Telephoto Lens, Bellows

0.2 mm – My limit with Bellows and Extension Tube, after cropping and expanding, fuzzy results

Every rock is different! Like people, some rocks are photogenic. Colorless and Black rocks are difficult.

Lighting is critical. Shadows provide 3D clues to the brain.

Panasonic DMC-GF3 Compact Mirrorless Camera

Minolta 50 mm MACRO Lens

1:1 Extension

Mounted on a Copy Stand

Looking into Electronic View Finder

Sensor works
In low light
(Like the
Fastest Film)

If the mineral is one inch or more, the MACRO lens Works well.

Here is a Smithsonite (light green) with pink unknown (also Smithsonite?) with scattered yellow Mimetite.

Field of View = FOV = width of specimen plus a little.

FOV 50 mm = ~2 inches

Zooming-in a bit also works, because the MACRO lens has good resolution.

FOV 20 mm = ~3/4 inch

Camera
With
Microscope
Adapter

Basically, a
Microscope
Eyepiece
Held Captive

Camera and
Adapter
mounted
on Stereo
Microscope,
in place of
one eyepiece

Further zooming-in using Stereo microscope, and stacking 4 images

FOV 5 mm

Photo is fair, but not great.

Microscope is good for live viewing, but for photographs the Bellows is better.

Luminar Lens
Extension Tube
Bellows
Camera

All pointed at a micromount box

Luminar Lens

Photo taken with Bellows and Luminar Lens

Pyrargyrite

Ag₃SbS₃

Nabob Mine, Clear Creek County, Colorado

FOV 1 mm = ~ 1/20th inch

NEW:

Mitutoyo Infinite Focus Lens

Adapter

Minolta 135 mm Telephoto Lens

Camera

Mitutoyo Lens, adding Bellows to increase magnification

Close-up of Mitutoyo Lens

Mitutoyo Lens is Big

Compared with Luminar Lens or with a Micromount Box

A Micromount in a 20 mm box, mounted on a Micrometer Stage

Allows Tiny Movements Fore and Aft

Useful for taking a series of photos at different Depths-of-field

Series of photos are then Stacked by CombineZP computer program to increase Depth-of-Field beyond limits of Optics

Side view of Micrometer Stage

Take a picture,
Turn the screw
1/8th of a turn,
Take next picture,
Repeat

Process needs to be automated, with computer control of stage and camera shutter

Hand-held Pocket Camera Photo of Micromount, cropped to the size of the mineral itself, thereby removing the box

Resolution 640 x 480 pixels. FOV 10 mm.

Looks OK at this size, But...

Attempt to crop and expand hand-held photo to fill a PowerPoint "slide"

Or: This is why all this fancy equipment is needed!

FOV 10 mm

Using the MACRO lens and the copy stand

Better than hand-held pocket camera, but the mineral is really too small for the MACRO lens

FOV 5 mm

Stereo Microscope

140 X(20 X eyepiece and7X zoom objective

Stacked 5 images

Field of View 1 mm

High magnification, but looks odd

Mitutoyo Lens

Stacked 41 images Re-stacked 3 groups

Fixed shake and flares with Photoshop

Field-of-View 2 mm

Two Chromium Minerals:

Uvarovite (green Garnet)

Ca₃Cr₂(SiO₄)₃

Kämmererite (purple), properly called Chromian Clinochlore

 $Mg_5(Al,Cr)_2Si_3O_{10}(OH)_8$

Two Chromium Minerals:

Uvarovite (green Garnet)

 $Ca_3Cr_2(SiO_4)_3$

Kämmererite (purple), properly called Chromian Clinochlore

 $Mg_5(Al,Cr)_2Si_3O_{10}(OH)_8$

From near Coalinga, California. Possibly:

Dallas Gem Mine area, San Benito River headwaters area, New Idria District, Diablo Range, San Benito Co., California, USA

This is my latest photo, and I am reasonably pleased.

I spent \$500 on the Mitutoyo lens (half off with a friend in Japan buying it there)

My Smallest Mineral, improved with Photoshop Elements Version 14 (half-off at Costco)

Cloncurryite

 $Cu_{0.5}(VO)_{0.5}Al_2(PO_4)_2F_2 \cdot 5H_2O$

A mineral containing vanadium

Great Australia Mine Cloncurry, Queensland, Australia

FOV 1 mm

The Limits of Magnification with my Stereo Microscope

Cross-section of a Pentagonite crystal From Owyhee Dam, Oregon

You can just make out a **Pentastar**.

Another vanadium mineral

 $Ca(VO)Si_4O_{10} \cdot 4H_2O$

FOV 2 mm at right, ~0.15 mm above

A better picture of a Not-so-tiny Pentagonite crystal cluster

 $Ca(VO)Si_4O_{10} \cdot 4H_2O$

From Poona, India

FOV 6 mm

Cavansite

 $Ca(VO)Si_4O_{10} \cdot 4H_2O$

A Dimorph of Pentagonite (same chemical composition, but different crystal structure)

Poona, India

FOV 2.5 mm

Another vanadium mineral:

Vanadinite

Pb₅(VO₄)₃Cl

Hamburg Mine, La Paz County, Arizona

FOV 2 mm

Fourmarierite

 $Pb(UO_{2})_{4}O_{3}(OH)_{4} \cdot 4H_{2}O$

Uranium mineral from

Shinkolobwe, Katanga, Zaire, aka PR Congo

FOV 2.5 mm

Three more uranium minerals:

Cuprosklodowskite (green) Cu(UO₂)₂(SiO₃OH]₂ · 6H₂O

Rutherfordine (tan) (UO₂)CO₃

Schoepite (yellow) (UO₂)₈O₂(OH)₁₂ · 12H₂O

Musonoi, Katanga, Zaire

FOV 4 mm

Linarite PbCu(SO₄)(OH)₂

on

Anglesite PbSO₄

Grand Reef Mine, Grand County, Arizona

FOV 10 mm

MACRO lens on Bellows

Hemimorphite

 $Zn_4Si_2O_7(OH)_2 \cdot H_2O$

Santa Eulalia, Chihuahua, Mexico

Hemimorphic means top differs from bottom Orthorhombic Pyramidal Class *mm*2

FOV 1 mm

Luminar lens and Bellows

Descloizite

Pb(Zn,Cu)(VO₄)(OH)

Berg Aukas, Namibia

FOV 8 mm

A Copper and Aluminum Mineral

Turquoise $Cu(Al,Fe^{3+})_6(PO_4)_4(OH)_8 \cdot 4H_2O$

From Lynch Station, Virginia

A photo rescued by Photoshop Elements "Auto Shake Reduction"

FOV 2 mm

Two Manganese Minerals

Shigaite $Mn_6Al_3(OH)_{18}[Na(H_2O)_6][SO_4]_2$ · 6H₂O

on

Rhodochrosite MnCO₃

Colorful Uranium and Copper Minerals from Musonoi, Katanga, Zaire

Wulfenite (orange)
Pb(MoO₄)

Kasolite (yellow) Pb(UO_2)[SiO_4] · H_2O

Cuprosklodowskite (green) Cu(UO₂)₂(SiO₃OH]₂ · 6H₂O

Malachite (green grass) $Cu_2(CO_3)(OH)_2$

FOV 2.5 mm

Senegalite

 $Al_2(PO_4)(OH)(OH)_2 \cdot H_2O$

on

Turquoise

 $Cu(Al,Fe^{3+})_6(PO_4)_4(OH)_8 \cdot 4H_2O$

Mount Kourou Diakouma, Saraya, Falémé River District, Tambacounba Region, Senegal

FOV 1 mm

Hemimorphic

Luminar and Bellows, stack 3

Two Chromium Minerals

Chromian Titanite Ca(Ti,Cr)[SiO₄](O,OH)

on

Chromian Amesite Mg₂(Al,Cr)(AlSiO₅)(OH)₄

Saranovskii Mine, Saranovskaya Village (Sarany), Gornozavodskii area, Permskaya Oblast', Middle Urals, Urals Region, Russia

FOV 8 mm

Microscope, stack 12 images

Dioptase "Bow-Tie"

 $CuSiO_3 \cdot H_2O$

on

Apophyllite

 $KCa_4(Si_8O_{20})(OH,F) \cdot 8H_2O$

Christmas Mine, Gila County Arizona

FOV 8 mm

Stereo Microscope

The views from the left eyepiece and the right eyepiece of the Stereo Microscope

Try Cross-Eyed 3D viewing!

A photo I took in the 1970's with Kodachrome, tidied up with modern Photoshop

Wulfenite (yellow) Pb(MoO₄)

Hemimorphite (colorless) $Zn_4Si_2O_7(OH)_2 \cdot H_2O$

Ojuela Mine, Mapimi, Durango, Mexico

FOV 8 mm

MACRO lens on Bellows

Have I really made any Progress in Photography of Minerals???

